High-resolution three-dimensional structure of a single zinc finger from a human enhancer binding protein in solution.
نویسندگان
چکیده
The three-dimensional structure of a 30-residue synthetic peptide containing the carboxy-terminal "zinc finger" motif of a human enhancer binding protein has been determined by two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. The structure determination is based on 487 approximate interproton distance and 63 torsion angle (phi, psi, and chi 1) restraints. A total of 40 simulated annealing structures were calculated, and the atomic rms distribution about the mean coordinate positions (excluding residues 29 and 30 which are ill-defined) is 0.4 A for the backbone atoms, 0.8 A for all atoms, and 0.41 A for all atoms excluding the lysine and arginine side chains, which are disordered. The solution structure of the zinc finger consists of two irregular antiparallel beta-strands connected by an atypical turn (residues 3-12) and a classical alpha-helix (residues 14-24). The zinc is tetrahedrally coordinated to the sulfur atoms of two cysteines (Cys-5 and Cys-8) and to the N epsilon 2 atoms of two histidines (His-21 and His-27). The two cysteine residues are located in the turn connecting the two beta-strands (residues 5-8); one of the histidine ligands (His-21) is in the alpha-helix, while the second histidine (His-27) is at the end of a looplike structure (formed by the end of the alpha-helix and a turn). The general architecture is qualitatively similar to two previously determined low-resolution Cys2-His2 zinc finger structures, although distinct differences can be observed in the beta-strands and turn and in the region around the two histidines coordinated to zinc. Comparison of the overall polypeptide fold of the enhancer binding protein zinc finger with known structures in the crystallographic data base reveals a striking similarity to one region (residues 23-44) of the X-ray structure of proteinase inhibitor domain III of Japanese quail ovomucoid [Papamokos, E., Weber, E., Bode, W., Huber, R., Empie, M. W., Kato, I., & Laskowski, M. (1982) J. Mol. Biol. 158, 515-537], which could be superimposed with a backbone atomic rms difference of 0.95 A on residues 3-25 (excluding residue 6) of the zinc finger from the enhancer binding protein. The presence of structural homology between two proteins of very different function may indicate that the so-called zinc finger motif is not unique for a class of DNA binding proteins but may represent a general folding motif found in a variety of proteins irrespective of their function.
منابع مشابه
High-resolution solution structure of the double Cys2His2 zinc finger from the human enhancer binding protein MBP-1.
The high-resolution three-dimensional structure of a synthetic 57-residue peptide comprising the double zinc finger of the human enhancer binding protein MBP-1 has been determined in solution by nuclear magnetic resonance spectroscopy on the basis of 1280 experimental restraints. A total of 30 simulated annealing structures were calculated. The backbone atomic root-mean-square distributions abo...
متن کاملIn silico investigation of lactoferrin protein characterizations for the prediction of anti-microbial properties
Lactoferrin (Lf) is an iron-binding multi-functional glycoprotein which has numerous physiological functions such as iron transportation, anti-microbial activity and immune response. In this study, different in silico approaches were exploited to investigate Lf protein properties in a number of mammalian species. Results showed that the iron-binding site, DNA and RNA-binding sites, signal pepti...
متن کاملIntegrative genomic analyses on Ikaros and its expression related to solid cancer prognosis.
Ikaros is a member of the Kruppel family of zinc finger DNA-binding proteins. The Ikaros protein contains two separate regions of zinc-finger domains: 4 DNA-binding zinc fingers near the N-terminus and 2 zinc fingers for protein-protein interactions near the C-terminus. Here, we identified the Ikaros gene from 14 vertebrate genomes and found Ikaros existed in all kinds of vertebrate including f...
متن کاملSolution structure of the N-terminal zinc fingers of the Xenopus laevis double-stranded RNA-binding protein ZFa.
Several zinc finger proteins have been discovered recently that bind specifically to double-stranded RNA. These include the mammalian JAZ and wig proteins, and the seven-zinc finger protein ZFa from Xenopus laevis. We have determined the solution structure of a 127 residue fragment of ZFa, which consists of two zinc finger domains connected by a linker that remains unstructured in the free prot...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 29 40 شماره
صفحات -
تاریخ انتشار 1990